Biologia

Biologia

domingo, 22 de marzo de 2009

Genes Letales

Los genes letales son una especie de genes mutantes y representan la forma más extrema de una serie que recibe la viabilidad en diferentes grados; es decir, son aquellos que provocan la muerte del organismo bajo ciertas condiciones.Al contrario de lo que se piense, los genes letales son más comunes de lo que parece.
Cada ser humano porta, aproximadamente, 2 o 4 de ellos, pero el hecho de que estemos protegidos se lo debemos a ser heterocigotos para esos genes (pues los genes letales casi siempre son recesivos).
Actualmente, la biomedicina ha tratado de resolver este tipo de defectos genéticos contrarrestando sus efectos por medio de fármacos, pero lo que se espera es utilizar la terapia génica para evitar esos padecimientos, ya sea antes del nacimiento o bien manipulando genéticamente al organismo.

Genetica Mendeliana



Genética mendeliana


Las Leyes de Mendel son un conjunto de reglas básicas sobre la transmisión por herencia de las características de los organismos padres a sus hijos. Se consideran reglas más que leyes, pues no se cumplen en todos los casos y hay excepciones, como cuando los genes están ligados, es decir, se encuentran en el mismo cromosoma, donde no se cumplen. Estas reglas básicas de herencia constituyen el fundamento de la genética. Las leyes se derivan del trabajo realizado por Gregor Mendel publicado en el año 1865 y el 1866, aunque fue ignorado por largo tiempo hasta su redescubrimiento en 1900.






Leyes de Mendel:




Las tres leyes de Mendel explican y predicen cómo van a ser los caracteres físicos (fenotipo) de un nuevo individuo. Frecuentemente se han descrito como «leyes para explicar la transmisión de caracteres» (herencia genética) a la descendencia. Desde este punto de vista, de transmisión de caracteres, estrictamente hablando no correspondería considerar la primera ley de Mendel (Ley de la uniformidad). Es un error muy extendido suponer que la uniformidad de los híbridos que Mendel observó en sus experimentos es una ley de transmisión, pero la dominancia nada tiene que ver con la transmisión, sino con la expresión del genotipo. Por lo que esta observación mendeliana en ocasiones no se considera una ley de Mendel. Así pues, hay tres leyes de Mendel que explican los caracteres de la descendencia de dos individuos, pero solo son dos las leyes mendelianas de transmisión: la Ley de segregación de caracteres independientes (2ª ley, que, si no se tiene en cuenta la ley de uniformidad, es descrita como 1ª Ley) y la Ley de la herencia independiente de caracteres (3ª ley, en ocasiones descrita como 2ª Ley).




1ª Ley de Mendel: Ley de la uniformidad =Establece que si se cruzan dos razas puras para un determinado carácter, los descendientes de la primera generación son todos iguales entre sí (igual fenotipo e igual genotipo) e iguales (en fenotipo) a uno de los progenitores.
No es una ley de transmisión de caracteres, sino de manifestación de dominancia frente a la no manifestación de los caracteres recesivos. Por ello, en ocasiones no es considerada una de las leyes de Mendel.



2ª Ley de Mendel: Ley de la segregación
Conocida también, en ocasiones como la primera Ley de Mendel, de la segregación equitativa o disyunción de los alelos. Esta ley establece que durante la formación de los gametos cada alelo de un par se separa del otro miembro para determinar la constitución genética del gameto filial. Es muy habitual representar las posibilidades de hibridación mediante un cuadro de Punnett.
Mendel obtuvo esta ley al cruzar diferentes variedades de individuos heterocigotos (diploides con dos variantes alélicas del mismo gen: Aa), y pudo observar en sus experimentos que obtenía muchos guisantes con características de piel amarilla y otros (menos) con características de piel verde, comprobó que la proporción era de 3:4 de color amarilla y 1:4 de color verde (3:1).
Según la interpretación actual, los dos alelos, que codifican para cada característica, son segregados durante la producción de gametos mediante una división celular meiótica. Esto significa que cada gameto va a contener un solo alelo para cada gen. Lo cual permite que los alelos materno y paterno se combinen en el descendiente, asegurando la variación.
Para cada característica, un organismo hereda dos alelos, uno para cada pariente. Esto significa que en las células somáticas, un alelo proviene de la madre y otro del padre. Éstos pueden ser homocigóticos o heterocigóticos.

3ª Ley de Mendel: Ley de la segregación independiente
En ocasiones es descrita como la 2ª Ley. Mendel concluyó que diferentes rasgos son heredados independientemente unos de otros, no existe relación entre ellos, por tanto el patrón de herencia de un rasgo no afectará al patrón de herencia de otro. Sólo se cumple en aquellos genes que no están ligados (en diferentes cromosomas) o que están en regiones muy separadas del mismo cromosoma. Es decir, siguen las proporciones 9:3:3:1.

Codigo Genetico


Código genético

El codigo genetico es el conjunto de instrucciones que sirven para fabricar proteinas a partir de un orden de los nucleótidos que constituyen el ADN. Este codigo determina que cada grupo de tres nucleótidos codifica un aminoácido. (Fuente: David de la Parra Arredondo)

El código genético es la regla de correspondencia entre la serie de nucleótidos en que se basan los ácidos nucleicos y las series de aminoácidos (polipéptidos) en que se basan las proteínas. Es como el diccionario que permite traducir la información genética a estructura de proteína. A, T, G, y C son las "letras" del código genético y representan las bases nitrogenadas adenina, timina, guanina y citosina, respectivamente. Cada una de estas bases forma, junto con un glúcido (pentosa) y un grupo fosfato, un nucleótido; el ADN y el ARN son polímeros formados por nucleótidos encadenados.





Cada tres nucleótidos de la cadena (cada triplete) forman una unidad funcional llamada codón. Como en cada cadena pueden aparecer cuatro nucleótidos distintos (tantos como bases nitrogenadas, que son el componente diferencial) caben 43 (4x4x4, es decir, 64) combinaciones o codones distintos. A cada codón le corresponde un único “significado”, que será o un aminoácido, lo que ocurre en 61 casos, o una instrucción de “final de traducción”, en los tres casos restantes (ver la tabla). La combinación de codones que se expresa en una secuencia lineal de nucleótidos, conforman cada gen necesario para producir la síntesis de una macromolécula con función celular específica.

Durante el proceso de traducción (síntesis de proteína) el mensaje genético es leído de una cadena de ARN, colocando cada vez el aminoácido indicado por el codón siguiente según la regla que llamamos código genético.

Ley de Hardy-Weinberg

Ley de Hardy-Weinberg
También llamada ley del equilibrio genético, conjunto de fórmulas matemáticas que describen cómo la proporción de distintos genes, unidades de herencia que determinan una característica particular en un organismo, puede permanecer igual a lo largo del tiempo en una población numerosa de individuos.

Esta ley indica la frecuencia con la que determinados alelos, variantes de un gen determinado que contienen información específica respecto a un carácter (por ejemplo el color de los ojos), deberían aparecer en una población. La ley establece también la frecuencia con la que determinados genotipos, combinación real de genes de la que un organismo es portador y puede trasmitir a sus descendientes, deberían aparecer en esta misma población. Mediante el estudio de estas frecuencias alélica ( o frecuencia génica) y genotípica, los científicos pueden identificar poblaciones que están cambiando genéticamente o evolucionando. También es posible predecir la presencia de anomalías genéticas en las poblaciones.
Para determinar si la población conserva la misma proporción, o equilibrio, de genotipos a lo largo del tiempo, los científicos han comparado las frecuencias genotípicas esperadas de una población con sus frecuencias genotípicas reales (determinadas por la división del número total de cada genotipo en el grupo, entre el número total de individuos de dicho grupo)

De acuerdo con la ley de Hardy-Weinberg, este equilibrio se conserva en una población siempre que se cumplan cuatro condiciones. En primer lugar, los individuos deben seleccionar parejas al azar con independencia de los caracteres visibles, o fenotipos. Segundo, ningún genotipo puede verse favorecido de manera que su frecuencia aumente en la población a lo largo del tiempo. La tercera condición establece que no pueden introducirse alelos nuevos en la población, bien procedentes de individuos externos a la población o como consecuencia de alelos que han cambiado, o mutado, de una forma a otra. La última condición establece que el número de individuos y genotipos en la población debe permanecer elevado. Una población que cumple estos requisitos mantiene constantes las frecuencias génicas y genotípicas de generación en generación la composición genética de la población nunca varía. Los genes poco comunes nunca desaparecen y los genes más habituales siguen siendo numerosos.

Traduccion del DNA

Estructura del RNA

Transcripcion del DNA

Duplicacion del DNA

Meiosis

Meiosis
En meiosis 1, los cromosomas en una célula diploide se segregan nuevamente, produciendo cuatro células hijas haploides. Este es el paso de la meiosis que genera diversidad genética.
La meiosis II es similar a la mitosis. Sin embargo no hay fase "S". Las cromatidas de cada cromosoma ya no son idénticas en razón de la recombinación.
La meiosis II separa las cromatidas produciendo dos células hijas, cada una con 23 cromosomas (haploide), y cada cromosoma tiene solamente una cromatida.

Mitosis

Mitosis
La mitosis es el proceso de división celular por el cual se conserva la información genética contenida en sus cromosomas, que pasa de esta manera a las sucesivas células a que la mitosis va a dar origen. La mitosis es igualmente un verdadero proceso de multiplicación celular que participa en el desarrollo, el crecimiento y la regeneración del organismo. PROFASE En ella se hacen patentes un cierto número de filamentos dobles: los cromosomas. Cada cromosoma constituido por dos cromátidas, que se mantienen unidas por un estrangulamiento que es el centrómero. Cada cromátida corresponde a una larga cadena de ADN. Al final de la profase ha desaparecido la membrana nuclear y el nucléolo. muy condensada
METAFASE Se inicia con la aparición del huso, dónde se insertan los cromosomas y se van desplazando hasta situarse en el ecuador del huso, formando la placa metafásica o ecuatorial.
ANAFASE En ella el centrómero se divide y cada cromosoma se separa en sus dos cromátidas. Los centrómeros emigran a lo largo de las fibras del huso en direcciones opuestas, arrastrando cada uno en su desplazamiento a una cromátida. La anafase constituye la fase crucial de la mitosis, porque en ella se realiza la distribución de las dos copias de la información genética original.
TELOFASE Los dos grupos de cromátidas, comienzan a descondensarse, se reconstruye la membrana nuclear, alrededor de cada conjunto cromosómico, lo cual definirá los nuevos núcleos hijos.

sábado, 21 de marzo de 2009

Principio de Griffith

Propiedades de una molecula para se material hereditario
Las características o propiedades que debe reunir cualquier molécula para ser el material hereditario se deducen de la observación de las propiedades que tienen los organismos vivos.
Almacenar informacion genetica de una forma estable
Replicarse y transmitirse de una celula a la otra y de una generacion a la siguiente
Llevar informacion para otro tipo de moléculas y estructuras
Mutacion y Recombinacion
Fuente Primaria de variabilidad genética: mutación.
Las alteraciones o cambios en la molécula que contiene la información se denominan mutaciones. La mutación es la fuente primaria de variabilidad genética, si no existiera la mutación, no habría sido posible observar la enorme variabilidad existente de especies diferentes, ni la variabilidad dentro de cada especie. Sin la mutación no se podría haber producido el proceso evolutivo.
Fuente secundaria de variabilidad genética: recombinación.
La producción de nuevas combinaciones genéticas a partir de las generadas inicialmente por mutación se produce cuando dos moléculas de material hereditario intercambian información mediante el proceso de la recombinación. Dos mutaciones diferentes que se encontraban en moléculas de material hereditario distintas pueden reunirse en la misma molécula mediante la recombinación. Por consiguiente, la recombinación genera variabilidad produciendo combinaciones nuevas de mutaciones.

Genes y Alelos

Gen




Un gen es el conjunto de una secuencia determinada de nucleótidos de uno de los lados de la escalera del cromosoma referenciado. La secuencia puede llegar a formar proteínas, o serán inhibidas, dependiendo del programa asignado para la célula que aporte los cromosomas.


Alelos
Un alelo (del griego: αλλήλων, allélon: uno a otro, unos a otras) es cada una de las formas alternativas que puede tener un gen que se diferencian en su secuencia y que se puede manifestar en modificaciones concretas de la función de ese gen. Al ser la mayoría de los mamíferos diploides estos poseen dos alelos de cada gen, uno de ellos procedente del padre y el otro de la madre. Cada par de alelos se ubica en igual locus o lugar del cromosoma.

Mutaciones

Mutación es una alteración en el fenotipo y genotipo de un ser.

Es provocado por agentes mutantes como son: anilinas, rayos x, gama, infrarrojos, drogas, alcohol, medicamentos, radiaciones químicas, tabaco.

Las mutaciones pueden ser ocasionar dos daños:

a)Inmediato.- Es ocasionado cuando el agente mutante deforma al ser.

b)Tardío.- Ocasiona daños en las células reproductoras.

Las principales mutaciones son:

Polidactilia.- se desarrolla de 6 a 8 dedos en las manos y en los pies.

Sindactilia.- los dedos están soldados entre sí o presentan membranas interdigitales.

Braquidactilia.- es el acortamiento de los dedos de manos y pies.

Síndrome de Down.- es una sisomia en el cromosoma 21 (xxx) físicamente son de baja estatura,
la lengua gruesa, boca entreabierta, ojos oblicuos, deficiencia intelectual muy baja y occipucio plano.

Maullido de Gato.- es una alteración en el cromosoma 5, no se desarrolla la laringe, esto provoca que los sonidos sean semejantes a maullidos, presentan deficiencia mental y microcefalia.

Hemofilia.- es la falta de coagulacion en la cabeza aportadora es la mujer pero se manifiesta solo en los hombres.

Daltonismo.- es una alteración en la visión de los colores debido a la mala estructuración de los conos y bastoncitos de la retina.

Síndrome de Turner.- es una mutación en el cromosoma 45 faltando una X en el cromosoma sexual solo se presenta en la mujer físicamente no adquiere la madurez sexual y biológicamente son estériles.

Síndrome de Klinelfelter.- es una alteración sexual en el cromosoma 47 o 48 siendo (xxx) o (xxxy) se presenta en los hombres, se presentan los caracteres secundarios, presenta ginecomastia desarrollo de las glándulas mamarias, son estériles y no alcanzan su madurez sexual.

Frente Olímpica.- es una alteración del hueso frontal se manifiesta con una proyección interna de los maxilares.

Estructura de los nucleotidos

Los nucleótidos pueden unirse en cadenas largas por reacciones de condensación que involucran a los grupos hidroxilo de las subunidades de fosfato y de azúcar. En la figura se muestra una molécula de RNA que, como se observa, está formada por una sola cadena de nucleótidos. Las moléculas de DNA, en cambio, constan de dos cadenas de nucleótidos enrolladas sobre sí mismas, formando una doble hélice.
La ribosa es el azúcar en los nucleótidos que forman ácido ribonucleico (RNA) y la desoxirribosa es el azúcar en los nucleótidos que forman ácido desoxirribonucleico (DNA). Hay cinco bases nitrogenadas diferentes en los nucleótidos, que son los sillares de construcción de los ácidos nucleicos. Dos de ellas, la adenina y la guanina, se conocen como purinas . Las otras tres, citosina, timina y uracilo se conocen como pirimidinas .













Las cinco bases nitrogenadas de los nucleótidos que constituyen los ácidos nucleicos.
La adenina, la guanina y la citosina se encuentran tanto en el DNA como en el RNA, mientras que la timina se encuentra sólo en el DNA y el uracilo sólo en el RNA. Aunque sus componentes químicos son muy semejantes, el DNA y el RNA desempeñan papeles biológicos muy diferentes. El DNA es el constituyente primario de los cromosomas de las células y es el portador del mensaje genético. La función del RNA es transcribir el mensaje genético presente en el DNA y traducirlo a proteínas.
Los nucleótidos, además de su papel en la formación de los ácidos nucleicos, tienen una función independiente y vital para la vida celular. Cuando un nucleótido se modifica por la unión de dos grupos fosfato, se convierte en un transportador de energía, necesario para que se produzcan numerosas reacciones químicas celulares. La energía en los nucleótidos modificados, esta disponible en cantidades convenientes y aceptado en forma generalizada.
El principal portador de energía, en casi todos los procesos biológicos, es una molécula llamada adenosín trifosfato o ATP .
















La única diferencia entre el ATP y el AMP (adenosín monofosfato) es la unión de dos grupos fosfato adicionales. Aunque esta diferencia en la fórmula puede parecer pequeña, es la clave del funcionamiento del ATP en los seres vivos.
Los enlaces que unen los tres grupos fosfato son relativamente débiles, y pueden romperse con cierta facilidad por hidrólisis. Los productos de la reacción más común son el ADP -adenosín di fosfato- un grupo fosfato y energía. Esta energía al desprenderse, puede ser utilizada para producir otras reacciones químicas.





Con la adición de una molécula de agua al ATP, un grupo fosfato se separa de la molécula. Los productos de la reacción son el ADP, un grupo fosfato libre y energía. Alrededor de unas 7 Kcalorías de energía se liberan por cada mol de ATP hidrolizado. La reacción puede ocurrir en sentido contrario si se aportan las 7 Kcalorías por mol necesarias.

viernes, 20 de marzo de 2009

Bacteriofagos


Los virus son moléculas de DNA o RNA rodeadas por una envoltura proteica que necesitan células viables para poder replicarse. Los virus utilizan la maquinaria metabólica de las células para sintetizar su material genético y proteínas de la envoltura. Existen distintos tipos de virus que pueden infectar células procariontes o células eucariontes. Los bacteriófagos o fagos son virus que se reproducen en células procariontes.
El genoma de los fagos puede ser RNA simple cadena (MS2, Qß), RNA doble cadena (phi 6), DNA simple cadena (phi X174, fd, M13) o DNA doble cadena (T3, T7, lambda , T5, Mu, T2, T4). Estos ácidos nucleicos pueden contener bases inusuales que son sintetizadas por proteínas del fago. En los T-pares el genoma no contiene citosina sino 5'- hidroximetilcitosina, mientras que en otros tipos de fago alguna de las bases esta parcialmente sustituida.


Recombinacion bacteriana


El sobrecruzamiento se produce al azar a lo largo de las cromátidas, de modo que la frecuencia de recombinación entre dos genes depende de la distancia que los separe en el cromosoma. Si los genes están relativamente alejados, los gametos recombinados serán muy frecuentes para ese par de genes, pero si están más o menos próximos, los gametos recombinados serán más raros porque entre ellos habrá menos recombinaciones.
En los nuevos individuos producidos por gametos recombinados, la recombinación podrá originar nuevas combinaciones de fenotipos que antes no existían. Cuanto mayor sea el número de sobrecruzamientos, más elevado será el porcentaje de descendientes que muestran las combinaciones nuevas. Gracias a esto se pueden trazar o dibujar mediante experimentos de reproducción apropiados, las posiciones relativas de los genes a lo largo del cromosoma, estableciendo mapas de locus.


Estructura de los cromosomas


Los cromosomas eucariontes, consisten de ADN, ARN y proteínas denominado cromatina, son entidades dinámicas cuya apariencia varia con el estado del ciclo celular. Su forma característica condensada, solo se observa en la división (fase M del ciclo celular). Durante la interfase (lo que resta del ciclo celular), cuando son transcritos y replicados, están muy dispersos y no pueden ser distinguidos individualmente.





martes, 10 de marzo de 2009

Ovogenesis


Las fases de la ovogénesis

Fase de multiplicación. Las células germinales, que se encuentran en el ovario, se dividen por mitosis y dan lugar a las ovogonias. Esta fase ocurre antes del nacimiento.

Fase de crecimiento. Las ovogonias crecen debido a la acumulación de sustancias de reserva. Se transforman así en ovocitos de primer orden, que están alojados en una especie de vesículas rodeadas por unas células llamadas foliculares. El conjunto del ovocito y su cubierta de células constituye al folículo de Graaf. Los ovocitos que contienen han comenzado la primera división meiótica, pero se encuentran detenidos en la profase. Por tanto, también se detiene la gametogénesis. Esta fase también ocurre durante la fase fetal.

Fase de maduración. Con el inicio de la pubertad, se reanuda la gametogénesis. Varios ovocitos de primer orden comienzan a aumentar de tamaño y terminan la primera división meiótica. Se origina, por tanto, un ovocito de segundo orden (con 23 cromosomas formados por dos cromátidas) y un corpúsculo polar que degenera. Para que continúe el proceso debe producirse la fecundación. Esto hace que tenga lugar la segunda división meiótica y se forme el óvulo, que tiene 23 cromosomas, cada uno de ellos con una cromátida. También se desarrolla un segundo corpúsculo polar. Puesto que ya se ha producido la fecundación, en el interior del óvulo se encuentra, además de su núcleo, el del espermatozoide.

jueves, 5 de marzo de 2009

Estructura de las histonas

Estructura de las histonas


Las histonas son proteínas básicas, de baja masa molecular, muy conservadas evolutivamente entre los eucariotas y en algunos procariotas. Forman la cromatina junto con el ADN, sobre la base de unas unidades conocidas como nucleosomas.

Cadenas anti paralelas

Cadenas anti paralelas



Las dos cadenas de ADN son anti paralelas, por esta razón la ADN polimerasa puede solamente sintetizar un nuevo ADN en la dirección 5' a 3'. Esto plantea problemas especiales para la replicación de una doble cadena de ADN
.

Estructura del ADN


























Estructura del ADN

El ácido desoxirribonucleico, frecuentemente abreviado como ADN, es un tipo de ácido nucleico, una macromolécula que forma parte de todas las células. Contiene la información genética usada en el desarrollo y el funcionamiento de los organismos vivos conocidos y de algunos virus, siendo el responsable de su transmisión hereditaria. Desde el punto de vista químico el ADN es un polímero de nucleótidos, es decir, un poli nucleótido. Un polímero es un compuesto formado por muchas unidades simples conectadas entre sí, como si fuera un largo tren formado por vagones.